Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Obes Surg ; 33(9): 2789-2798, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37540480

RESUMEN

PURPOSE: Bariatric surgery (BS) has several potential metabolic benefits. However, little is known about its impact on changes in the inflammatory potential of diet and its effect on inflammatory and metabolic markers. This study aimed to assess the short-term beneficial effects of BS on dietary inflammatory potential and inflammatory and metabolic markers. MATERIALS AND METHODS: Participants (n = 20) were evaluated 3 months before and after BS. Body mass, body mass index, anthropometric measurements, fat mass, fat-free mass, visceral fat, skeletal muscle mass, basal metabolic rate, serum lipids, HOMA-IR, QUICKI and inflammatory markers, including leptin, adiponectin, adiponectin/leptin ratio and plasminogen activator inhibitor-1 (PAI-1), were evaluated. Diet data were collected using a 3-day diet record and the dietary inflammatory index (DII®) and energy-adjusted dietary inflammatory index (E-DIITM) scores were computed. RESULTS: There was a reduction in DII® (2.56 vs 2.13) and E-DIITM (2.18 vs 0.45) indicating an improvement in inflammatory nutritional profile. Moreover, there were increases in the adiponectin/leptin ratio (0.08 vs 0.21) and QUICKI scores (0.31 vs 0.37), and reductions in leptin (36.66 vs 11.41 ng/ml) and HOMA-IR scores (3.93 vs 1.50). There were also improvements in body composition and anthropometric parameters. CONCLUSIONS: BS promotes changes in metabolic profile, inflammatory state and food intake and these modifications appeared to be associated with improvements in diet-related inflammation, an increase in the adiponectin/leptin ratio and a reduction in leptin. These results contribute to knowledge on the contribution bariatric surgery can make to the treatment of obesity and the reduction of related comorbidities.


Asunto(s)
Cirugía Bariátrica , Obesidad Mórbida , Humanos , Leptina , Adiponectina , Obesidad Mórbida/cirugía , Índice de Masa Corporal , Biomarcadores
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166729, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37137431

RESUMEN

Alzheimer's disease is the most common form of dementia. One of its pathological hallmarks is Aß accumulation, which is influenced by APOE genotype and expression, as well as by sleep homeostasis. However, conflicting mechanisms for APOE roles in Aß clearance have been reported, and the relationship between APOE and sleep also remains unclear. In this study, we aimed to investigate how hormonal alteration caused by sleep deprivation affects APOE and its receptors in rats, and to evaluate the role of different cell types in Aß clearance. Paradoxical sleep deprivation for 96 h increased Aß level in hippocampus with concomitant reduction of APOE and LRP1 at the time point within the resting period. Sleep deprivation also significantly reduced T4 levels in both active and resting times. To evaluate the effect of T4 variation, C6 glial cells and primary brain endothelial cells were treated with T4. High T4 level (300 ng/mL) increased APOE, but reduced LRP1 and LDL-R in C6 cells, while in primary endothelial cells, LDL-R levels were increased. Treatment of C6 cells with exogenous APOE reduced LRP1 and Aß uptake. These results suggest that T4 modulates LRP1 and LDL-R in both cell types, but in the opposite manner, thus, sleep deprivation might modify the ratio of the receptors in blood-brain barrier and glial cells by altering T4 levels. Considering that LRP1 and LDL-R are important for Aß clearance, sleep deprivation might also affect the degree of participation of glia in Aß clearance, and consequently, turnover of Aß in the brain.


Asunto(s)
Péptidos beta-Amiloides , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Animales , Ratas , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Péptidos beta-Amiloides/metabolismo , Privación de Sueño/metabolismo , Privación de Sueño/patología , Células Endoteliales/metabolismo , Hipocampo/metabolismo , Apolipoproteínas E/metabolismo
3.
Cell Signal ; 81: 109939, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33529759

RESUMEN

BACKGROUND: previous studies have shown that muscle atrophy is observed after sleep deprivation (SD) protocols; however, the mechanisms responsible are not fully understood. Muscle trophism can be modulated by several factors, including energy balance (positive or negative), nutritional status, oxidative stress, the level of physical activity, and disuse. The metabolic differences that exist in different types of muscle fiber may also be the result of different adaptive responses. To better understand these mechanisms, we evaluated markers of oxidative damage and histopathological changes in different types of muscle fibers in sleep-deprived rats. METHODS: Twenty male Wistar EPM-1 rats were randomly allocated in two groups: a control group (CTL group; n = 10) and a sleep deprived group (SD group; n = 10). The SD group was submitted to continuous paradoxical SD for 96  h; the soleus (type I fibers) and plantar (type II fiber) muscles were analyzed for histopathological changes, trophism, lysosomal activity, and oxidative damage. Oxidative damage was assessed by lipid peroxidation and nuclear labeling of 8-OHdG. RESULTS: The data demonstrated that SD increased the nuclear labeling of 8-OHdG and induced histopathological changes in both muscles, being more evident in the soleus muscle. In the type I fibers there was signs of tissue degeneration, inflammatory infiltrate and tissue edema. Muscle atrophy was observed in both muscles. The concentration of malondialdehyde, and cathepsin L activity only increased in type I fibers after SD. CONCLUSION: These data indicate that the histopathological changes observed after 96 h of SD in the skeletal muscle occur by different processes, according to the type of muscle fiber, with muscles predominantly composed of type I fibers undergoing greater oxidative damage and catabolic activity, as evidenced by a larger increase in 8-OHdG labeling, lipid peroxidation, and lysosomal activity.


Asunto(s)
Fibras Musculares de Contracción Rápida , Fibras Musculares de Contracción Lenta , Estrés Oxidativo , Privación de Sueño , Animales , Masculino , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Ratas , Ratas Wistar , Privación de Sueño/metabolismo , Privación de Sueño/patología
4.
Neurochem Res ; 41(7): 1691-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26975317

RESUMEN

Cellular prion protein (PrP(C)) is a glycoprotein of the plasma membrane that plays pleiotropic functions by interacting with multiple signaling complexes at the cell surface. Recently, a number of studies have reported the involvement of PrP(C) in dopamine metabolism and signaling, including its interactions with tyrosine hydroxylase (TH) and dopamine receptors. However, the outcomes reported by independent studies are still debatable. Therefore in this study, we investigated the effects of PrP(C) on the TH expression during the differentiation of N2a cells with dibutyryl-cAMP, a well-known cAMP analog that activates TH transcription. Upon differentiation, TH was induced with concomitant reduction of PrP(C) at protein level, but not at mRNA level. shRNA-mediated PrP(C) reduction increased the basal level of TH at both mRNA and protein levels without dibutyryl-cAMP treatment. This phenotype was reversed by re-expression of PrP(C). PrP(C) knockdown also potentiated the effect of dibutyryl-cAMP on TH expression. Our findings suggest that PrP(C) has suppressive effects on TH expression. As a consequence, altered PrP(C) functions may affect the regulation of dopamine metabolism and related neurological disorders.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Proteínas PrPC/fisiología , Tirosina 3-Monooxigenasa/biosíntesis , Animales , Diferenciación Celular/fisiología , Línea Celular Tumoral , Dopamina/metabolismo , Ratones , Tirosina 3-Monooxigenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...